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Abstract— The NAND flash memory channel is corrupted by
different types of noises, such as the data retention noise and
the wear-out noise, which lead to unknown channel offset and
make the flash memory channel non-stationary. In the literature,
machine learning-based methods have been proposed for data
detection for flash memory channels. However, these methods
require a large number of training samples and labels to achieve
a satisfactory performance, which is costly. Furthermore, with
a large unknown channel offset, it may be impossible to obtain
enough correct labels. In this paper, we reformulate the data
detection for the flash memory channel as a transfer learning
(TL) problem. We then propose a model-based deep TL (DTL)
algorithm for flash memory channel detection. It can effectively
reduce the training data size from 106 samples to less than 104

samples. Moreover, we propose an unsupervised domain adap-
tation (UDA)-based DTL algorithm using moment alignment,
which can detect data without any labels. Hence, it is suitable
for scenarios where the decoding of error-correcting code fails
and no labels can be obtained. Finally, a UDA-based threshold
detector is proposed to eliminate the need for a neural network.
Both the channel raw error rate analysis and simulation results
demonstrate that the proposed DTL-based detection schemes
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can achieve near-optimal bit error rate (BER) performance with
much less training data and/or without using any labels.

Index Terms— Data detection, error correction code, flash
memory, neural network, transfer learning.

I. INTRODUCTION

AS A TYPE of emerging non-volatile memories (NVMs),
NAND flash memory has been widely applied in various

storage systems, ranging from mobile devices to data centers.
To increase the storage density, flash memory technologies
have been evolved from one bit per cell (single-level-cell
(SLC)) to a maximum of four bits per cell (quad-level-cell
(QLC)) [1]. However, the raw bit error rate (RBER) of flash
memories with multiple bits per cell becomes larger due
to various impairments of the system that are difficult to
be predicted and compensated [1] before the decoding of
error correction codes (ECCs). In particular, the wear-out
noise caused by program/erase (P/E) cycling and the data
retention noise caused by charge leakage over time dominate
the source of errors, and they lead to unknown channel/cell
threshold voltage offset and make the flash memory channel
non-stationary [2].

In this paper, we consider NAND flash memory with q bits
stored in each memory cell, which results in 2q possible cell
states. The threshold voltage of each state can be represented
by a probability density function (PDF). As an example,
the threshold voltage distributions for multi-level cell (MLC)
(q = 2) NAND flash memory are illustrated in Fig. 1. The
boundaries Va, Vb, Vc between neighboring states are referred
as read reference voltages or read thresholds, which are used
to differentiate the states upon reading the memory cell. When
the memory cells are corrupted by various noises, the PDF of
these states changes, making the original read thresholds no
longer optimal. These sub-optimal read thresholds will lead to
more raw bit errors, which severely affect the reliability of the
flash memory [1].

To mitigate such performance degradation of flash memo-
ries, ECCs have been employed to correct a certain amount
of errors. To correct the multiple-bit errors, Bose-Chaudhuri-
Hocquenghem (BCH) codes have been widely applied in
practical flash memories [3]. As the technology scales down,
more powerful ECCs such as the low-density parity-check
(LDPC) codes have been proposed to provide higher error-
correction capability [4], [5]. Since ECCs correct the errors
with the cost of sacrificing data storage efficiency, better
channel/data detection schemes that can effectively reduce the
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Fig. 1. The initial threshold voltage distributions of MLC (q = 2) NAND
flash memory.

channel RBER before ECC decoding are needed. As illustrated
in the literature, the most effective approach is to adjust the
read thresholds with the change of channel conditions to
achieve the best RBER performance, which is also the main
focus of this paper.

A. Related Works

The design of read thresholds for the flash memories has
been investigated in many literature works [6], [7], [8], [9],
[10]. They can be classified into two types: the model-driven
method and the data-driven method. The model-driven method
assumes that the flash memory channel can be modelled by
given distributions of the cell threshold voltages, and it then
designs the read thresholds based on the estimated PDFs.
Specifically, the work of [11] proposed to model the MLC
flash memory channel by Gaussian mixture PDF, and then
estimated the distribution parameters by gradient descent and
Levenberg-Marquardt methods. To better capture the noise
statistics, different distributions such as the Beta distribution,
Log-normal distribution and Student’s t-distribution were also
proposed to model the noise PDF [12], [13] of the flash mem-
ory channel. For given noise distributions, the read thresholds
or quantization boundaries can be designed by maximizing the
mutual information (MMI) of the channel [7], or by optimizing
some other information theoretic criteria [8], [9]. However, all
these model-based methods assume that the channel modeling
and the online parameter estimation are accurate, which is
difficult to achieve due to the complication of memory physics
for various noises.

On the other hand, the data-driven method does not need to
know the a priori noise PDF. One typical approach is to try
different read thresholds until the ECC successfully decodes
the codeword [14]. However, this read-retry scheme requires
many times of read operations, which lead to a large latency
and power consumption. Furthermore, it cannot guarantee
to find the optimal read thresholds. Recently, the machine
learning-based methods were also proposed to optimize the
read thresholds and log-likelihood ratios (LLRs) for ECC
decoding [10], [15], [16], [17]. In particular, a deep learning
(DL)-based framework to design read thresholds was first
proposed in [10], and both recurrent neural network (RNN)
and convolutional neural network (CNN)-based detectors were
shown to achieve the near-optimal BER performance [10],
[15]. In [16], an unsupervised expectation maximization (EM)
algorithm was proposed to estimate the channel transition
probabilities of the flash memory channel. However, only the

binary asymmetric channel (BAC) was actually considered
in [16], and the proposed EM algorithm needs to be iter-
ated with the ECC decoder, leading to a very large latency.
In [17], a machine learning-based LLR estimation scheme
was proposed for flash memories. Although it can directly
estimate the LLR, it needs to be invoked for each data
block and thereby also results in a large latency and power
consumption. Moreover, it is difficult to obtain the optimal
LLR using training labels in the presence of the unknown
channel offset/noise.

B. Motivations and Contributions of This Work

Although the DL-based read thresholds design can approach
the optimal BER performance of the MLC flash memory
channel [10], [15], as will be shown in Section III-B, it needs
to have a large amount of training samples and labels to
achieve a satisfactory performance, which is costly in practice.
Even if the neural network can be activated periodically to
update the read thresholds, the channel mismatch may still
lead to significant performance degradation. Moreover, when
the channel offset is large (e.g. caused by a long retention time
or a large number of P/E cycles), it will be difficult to obtain
enough labels for training. Therefore, it is highly desired to
design a DL-based detection approach that can be adapted to
unknown channel offset with only a small amount of training
samples.

To accomplish this objective, it is necessary to leverage the
characteristics of the flash memory channel. It is known that
during the early stages of flash memory’s lifespan, the channel
condition is good and sufficient training samples and labels can
be readily acquired. However, as the number of P/E cycles
and retention time increase, the noises will severely degrade
the performance, and it will become increasingly challenging
to obtain labels through ECC decoding. Hence, it is desired
to leverage the information from the early stages to reduce
the learning difficulty at the targeted P/E cycles and retention
time. Inspired by human’s capability of learning knowledge
from past experience, transfer learning (TL) was proposed to
exploit the knowledge and experience gained from a related
task to improve the performance of the target task [18], which
is highly suitable to our application.

There are different types of TL approaches reported in the
literature, such as the instance-based TL, the feature-based
TL, and the parameter-based TL [19], [20], [21], [22], [23],
[24]. Recently, with the emerge of deep learning techniques,
the deep TL (DTL) has also been proposed by integrating TL
with deep neural networks [25], [26]. With TL or DTL, the
knowledge from the source domain can be transferred to the
target domain under the condition that a connection/similarity
exists between the two domains. This will significantly alle-
viate the training difficulty in the target domain. In particular,
as a type of TL, the unsupervised domain adaptation (UDA)
techniques such as maximum mean discrepancy (MMD) [27]
and correlation alignment (CORAL) [21] were proposed to
transfer knowledge from a labeled source domain to an unla-
beled target domain [28].
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Inspired by the above ideas, in this work, we propose
a DTL framework for the data detection of flash memory
channels to reduce the required training samples and labels.
Our contributions are summarized as follows.

1) We formulate the data detection of the flash memory
channel as a TL problem. We propose a model-based
DTL algorithm which can reduce the number of required
training samples and labels by two orders of magnitude.

2) To cope with the situations where labels are difficult
to obtain, we propose a UDA-based DTL algorithm by
aligning the first-order moments of the source domain
and target domain, based on which the neural network
can be trained without any labels in the target domain.

3) Inspired by the UDA-based DTL algorithm, we further
propose a simple UDA-based threshold detector such
that the neural network is not required in both the source
and the target domains.

4) We also derive the symbol error rate (SER) and RBER
for the uncoded MLC and triple-level-cell (TLC) flash
memory channels as the performance benchmark.

Our proposed DTL framework can not only be used for the
data detection of the flash memory channels, but also be
applied to other data storage or communication channels with
the non-stationary nature. The proposed DTL algorithms can
be directly applied to data detection with quantized signals.
Furthermore, although in this work we adopt the RNN for
data detection, the model-based DTL and UDA-based DTL
algorithms can be applied to other types of neural networks
as well.

The rest of this paper is organized as follows. The basics of
NAND flash memories and the corresponding channel model
are introduced in Section II. In Section III, we present the
RNN-based data detection scheme for flash memories, and
the effect of training data size is investigated. In Section IV,
we formulate the data detection for flash memories as a
TL problem, and we propose two DTL algorithms and
a UDA-based threshold detector to effectively reduce the
required training samples and labels. Experiment results are
illustrated in Section V. Finally, Section VI concludes the
paper.

II. PRELIMINARIES

A. NAND Flash Memory Basics

In NAND flash memory, q-bit data is stored as the threshold
voltage in each flash memory cell. The possible states of
memory cells are denoted as {s0, s1, . . . , s2q−1}, where s0 is
known as the erased state, and other states are programmed
states. For example, for a MLC flash memory, there are four
possible states {s0, s1, s2, s3}, and a Gray mapping can be
used to represent the bit mapping of each state given by
{11, 10, 00, 01}. Similarly, TLC flash memory has eight possi-
ble states {s0, s1, . . . , s7} and the corresponding bit mapping
can be taken as {111, 110, 100, 000, 010, 011, 001, 101}.

However, the threshold voltage of each state will shift and
their distributions overlap due to various types of noises in
flash memories. This will result in decision errors and serious
degrade the data recovery performance. There are four major

sources of errors, namely, programming noise, data retention
noise, wear-out noise, and the cell-to-cell interference (CCI)
[6], [29]. The characteristics of these four types of noises are
described as follows:

1) Programming Noise: Each flash memory cell is a float-
ing gate and its threshold voltage can be configured by
transferring charges into the floating gate. However, process
variations will lead to the programming noise np of each
voltage state, which follows a Gaussian distribution with zero
mean and variance of σ2

e or σ2
p [29], [30], [31]. Here, σ2

e

denotes the noise variance of the erased state voltage vs0 ,
and σ2

p represents that of each programmed state voltage{
vs1 , vs2 , . . . , vs2q−1

}
. Therefore, we have

pnp
(v) =

{
N (0, σ2

e), for v ∈ {vs0}
N (0, σ2

p), for v ∈
{
vs1∼s2q−1

} . (1)

Then, this programming procedure is performed by repeat-
edly pulsing the voltage with a step voltage △Vpp, which is
known as incremental-step-pulse programming (ISPP) [32].
The ISPP noise ni only affects the programmed states{
vs1 , vs2 , . . . , vs2q−1

}
, while the erase state voltage vs0 is not

affected by ni. It causes the voltage of the programmed state
memory cells to follow a uniform distribution [6], given by

pni
(v) =


1

△Vpp
, Vp ≤ v ≤ Vp +△Vpp

0, otherwise,
, (2)

where Vp ∈ {Vs10 , Vs00 , Vs01}. Hence, the overall distribution
of the erase state is pnp

(v), and that of programmed states is
the convolution of pnp

(v) and pni
(v).

2) Data Retention Noise: The data retention noise nr is
caused by charge leakage after the memory cell is being
programmed, and it results in a threshold voltage drop over
time. Specifically, as the retention time increases, the threshold
voltage vp will shift towards that of the lower-voltage states,
while the erased state voltage vs0 is almost unchanged. More-
over, the voltage shift of higher-voltage states is larger than
that of the lower-voltage states. Following [30], [33], [34], the
data retention noise can be model by a Gaussian distribution
with mean µrs

and standard deviation σrs
, given by [29]

µrs
= (Vs − x0) · (AtN

αi
PE + BtN

αo
PE ) · ln(1 + T ), (3)

σrs
= 0.3|µrs

|, (4)

where Vs is the desired write voltage level with s ∈
{s0, s1, . . . , s2q−1}, NPE denotes the number of P/E cycles,
T is the retention time, and (x0, At, Bt, αi, αo) are constants.

3) Wear-Out Noise: The wear-out noise nw is caused by
the repeated P/E cyclings that damage the oxide layer of
floating gate transistors [35]. The wear-out noise tends to
widen the threshold voltage distributions and can be modelled
by a Gaussian or exponential distribution [30], [36] with zero
mean and standard deviation of σw = 0.00027 N0.62

PE [29].
4) CCI: Apart from the above noises, the threshold volt-

age of a flash memory cell may also be affected by the
programming of its adjacent cells [32], which is known
as the CCI. The CCI happens due to parasitic capacitance
coupling between memory cells. The interference from the
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adjacent cells is linearly added to the threshold voltage of a
victim cell. As reported in the literature [37], the CCI can
be effectively mitigated by pre-distortion or post-processing
techniques. Hence, in this work, we assume that the CCI has
already been removed.

B. Channel Model

The overall threshold voltage distributions of flash memory
cells can be computed as the convolution integral of all the
noise components, and it can be well approximated by the
Gaussian distribution [36]. In this paper, we first adopt the
Gaussian model to generate noise samples for simulations. The
combined noises can be expressed as

v = Vs + ni + np + nr + nw. (5)

Each noise component in (5) follows the Gaussian distribution
and the final combined means and variances are given by

µs0 = Vs0 − µrs0
, (6)

µs1∼s2q−1 = Vs1∼s2q−1 +
△Vpp

2
− µrs1∼s2q−1

, (7)

σ2
s0

= σ2
e + σ2

w + σ2
rs0

, (8)

σ2
s1∼s2q−1

= σ2
p + σ2

w + σ2
rs1∼s2q−1

, (9)

for the erased-state cell and programmed-state cell, respec-
tively. In the simulations, we adopt the parameters from [29]
and assume △Vpp = 0.2, σe = 0.35, σp = 0.05, x0 = 1.4,
At = 0.000035, Bt = 0.000235, αi = 0.62, and αo = 0.3.

Note that non-Gaussian distributions such as the Beta distri-
bution and the Gamma distribution can be used to accurately
model the heavy-tail of realistic threshold voltage distribu-
tions [12]. To further verify our proposed DTL-based detection
approaches in more realistic scenarios, the Gamma distribution
is also employed in our simulations.

The above channel model is a simplified model of the flash
memory channels that is widely adopted by many literature
works [11], [12], [36]. Due to the lack of experimental data
from the practical flash memories, this channel model is only
used to generate data for training and testing the NNs. Note
that our transfer learning approaches are not restricted to a
specific channel model, and the proposed DTL-based detectors
are data-driven and do not require any knowledge of the
channel.

III. NEURAL NETWORK-BASED DATA DETECTION
WITHOUT TL

A. RNN-Aided (RNNA) Threshold Detection

Similar to [10], the data detection of the flash memory
channels is formulated as a machine learning problem and the
NN is employed to accomplish the task. This problem can be
seen as either a classification task or a regression task. In this
work, to efficiently detect multiple data symbols for each
NN inference, the data detection is regarded as a regression
task. Specifically, the readback threshold voltage of the k-th
memory cell is denoted by vk. The input of the NN is given by
v = {v1, v2, · · · , vN}, where N is the input size of the NN.
The outputs of the NN are the estimates x̃ = {x̃1, x̃2, · · · , x̃N}

Fig. 2. The stacked RNN architecture for data detection.

of the labels x. To conveniently derive the read thresholds and
demap labels to binary bits for ECC decoding subsequently,
the 2q voltage states

{
vs0 , . . . , vs2q−1

}
of the flash memory

cell are labeled as {0, 1, . . . , 2q − 1}, respectively. Therefore,
if we denote the set of network parameters as θ, the neural
network output can be expressed as

x̃ = f(v, θ), (10)

where f(·) represents the neural network. The stored data in
the k-th memory cell can be detected by rounding the neural
network output x̃k to its nearest integer and then demapping
it back to binary bits. Our task is to find an neural network
model f(·) and the corresponding parameters θ such that the
detection error probability is minimized.

As illustrated by Fig. 2, we employ the same stacked RNN
architecture as proposed in [10]. It consists of two gated recur-
rent unit (GRU) layers and one fully-connected output layer.
For the output layer, an additional softplus activation function
is used to introduce non-linearity to the neural network, given
by σsoftplus(t) = ln(1 + exp(t)), with σsoftplus(t) ∈ [0,∞).
Once the RNN architecture is determined, we can train the
neural network to find model parameters such that the loss
function L(x, x̃) is minimized. In this work, we choose the
mean square error (MSE) as the loss function, given by

L(x, x̃) =
1
N

N∑
k=1

(xk − x̃k)2. (11)

By using the gradient descent-based algorithms and back
propagation, the optimized θ can be obtained by minimizing
L(x, x̃) over the entire training data set. After training, we can
employ the trained RNN with the optimized θ to detect the
data. The corresponding network settings and parameters are
given in Table I.

Similar to [10], we can derive updated read thresholds
based on the RNN outputs, leading to the RNN-aided (RNNA)
threshold detector. It only needs to be activated periodically
when the system is in the idle state. After that, the detection
can be carried out directly using the updated thresholds.
To obtain labels x for training, we can use codewords that
are correctly decoded by the ECC decoder as labels. However,
if the channel is severely contaminated by noises, it will be
difficult to obtain enough labels for training.
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TABLE I
NETWORK SETTINGS AND HYPER-PARAMETERS

Fig. 3. RBER performance of the optimum threshold detector and the
RNN detector with different number of training samples at NPE = 103 and
T = 103 hours.

B. The Effects of Training Data Size

As a supervised learning approach, to achieve satisfactory
detection performance, a large amount of training samples
with the corresponding labels is essential. In [10], it was
found that 106 training samples are sufficient to achieve
the near-optimal BER performance. However, collecting a
large amount of training data is costly, time-consuming, and
consumes additional power. A large training data size will
also increase the training complexity. Furthermore, when the
channel raw BER is above a certain value, the decoding of
ECC will fail. As a result, it may not be feasible to obtain
enough correct labels through ECC decoding.

Fig. 3 illustrates the influence of the number of training
samples on the RBER performance. The optimal BER which
assumes that perfect channel knowledge is known to the
detector (derived in Section IV-F) is also included as the
benchmark. Observe that the RNN detector can achieve the
optimum performance when the number of training samples
Ntrain = 1×106. When Ntrain decreases, the BER performance
degrades. In the next section, novel DTL-based detection
approaches will be presented to reduce the number of training
samples and labels without performance degradation.

IV. TRANSFER LEARNING-BASED DATA DETECTION

In this section, we first formulate the data detection for the
flash memory channel as a TL problem, and then propose a
model-based TL algorithm to effectively reduce the number
of required training samples and labels. We further propose a
UDA-based TL algorithm to detect the data without any labels
in the target domain. It can work well for the scenarios where
the ECC decoding fails due to unknown channel offset/noise.

A. Formulation of TL Problem

We first define a domain D, which consists of features v
and labels x, i.e., D = {vi, xi}n

i=1, where n is the number of
samples in the domain. To enable TL, we define two domains,
namely, the source domain Ds and the target domain Dt.
Generally, the aim of TL is to transfer the knowledge from
the source domain to the target domain, thus improving the
performance of the intended task.

In our case, the source domain Ds consists of v and x at
NPE = 0 and T = 0. It is obvious that we have sufficient
training data and labels at the source domain since they are
easy to be obtained when the flash memory channel is not
severely corrupted by noise in the beginning of its life. The
target domain Dt consists of data and labels at NPE = N target

PE
and T = T target, where N target

PE and T target are the targeted
number of P/E cycles and retention time while performing
data detection. Usually, the training samples and labels are
limited in the target domain, due to the restriction of read
latency, power consumption, and ECC capabilities. However,
it is noticed that the source domain and target domain have
similar channel characteristics. For example, they have the
same number of threshold voltage states, and the statistical
distributions of threshold voltages of these states are of the
same type (in this work, we follow the literature work and
assume the distributions are Gaussian), although the respective
values of mean and variance differ. This allows us to apply the
DTL technique for the data detection at the target domain with
significantly reduced number of training samples and labels.

Some properties of the source domain and target domain
for our TL problem are given as follows.

1) The features of the source domain vs =
{vs,1, vs,2, . . . , vs,ns

}, where vs,k ∈ R and ns is the
number of samples in the source domain. The features
of the target domain vt = {vt,1, vt,2, . . . , vt,nt

}, where
vt,k ∈ R, and nt is the number of samples in the target
domain. The feature space of the source domain Vs is
the same as that of the target domain Vt, i.e., Vs = Vt.

2) The labels of the source domain xs =
{xs,1, xs,2, . . . , xs,ns

}, where xs,k ∈ {0, 1, . . . , 2q − 1}.
The labels of the target domain xt =
{xt,1, xt,2, . . . , xt,nt}, where xt,k ∈ {0, 1, . . . , 2q − 1}.
The label space of the source domain Xs is the same
as that of the target domain Xt, i.e., Xs = Xt.

3) The conditional PDF p(vs|xs) of the source domain
is different from p(vt|xt) of the target domain, i.e.,
p(vs|xs) ̸= p(vt|xt).

According to above properties, the TL problem in our case can
be classified as the homogeneous TL. The task of the TL is to
transfer the knowledge from the source domain to the target
domain, and learn a prediction function f : vt → xt in the
target domain to minimize the loss ϕ between the predicted
outputs f(vt) and labels xt:

f∗ = arg min
f

E(vt,xt)∈Dt
ϕ(f(vt), xt), (12)

where ϕ(f(vt), xt) is the loss function between f(vt) and
xt, which can be defined as the MSE or other loss functions.
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Fig. 4. Training process of model-based DTL (a) Pre-training (b) Finetuning
(Retraining).

Fig. 5. Illustration of model-based DTL with weights reuse.

In the following, we present DTL methods to accomplish this
task based on the RNN detection framework.

B. Model-Based DTL

We first combine DTL directly with the RNN and the
resulting model-based DTL is realized by pre-training an RNN
in the source domain first, and then transferring the trained
RNN model and finetuning the network parameters in the
target domain. Specifically, the RNN is trained in the source
domain, and the updated set of network parameters θs can
obtained. Then, we train the same RNN in the target domain
with initial parameters θs. Moreover, to reduce the training
complexity, we further propose to freeze some parameters
during training.

The proposed model-based DTL is illustrated by Fig. 4 and
Fig. 5. First, the pre-trained model parameters θs are obtained
by training the RNN in the source domain with source data vs

and labels xs. In the target domain, the same RNN architecture
is deployed and the model parameters are initialized by θs.
Then, the RNN model is retrained by finetuning the parameters
from the pre-trained model. Moreover, it has been demon-
strated that in a deep neural network, the first few layers only
learn general features and we can directly transfer them to new
tasks [38]. Motivated by this, as shown in Fig. 5, we fix model
weights of the first GRU layer. Only the second GRU layer and
the fully-connected layer are retrained in the target domain,
resulting in less training complexity. For example, if the input
size of the RNN is 20, the number of training parameters

Fig. 6. The RBER performance of the finetuned RNN detector with different
number of training samples in the target domain, with N

target
PE = 5× 103 and

T target = 5× 103 hours.

can be reduced from 3921 to 2541, which yields about 35%
reduction of the training complexity. The steps of the proposed
model-based DTL are summarized in Algorithm 1.

Algorithm 1 Model-Based DTL Detection
Input: Source data: vs, source labels: xs, target data for

training: vtrain
t , target labels for training: xtrain

t , target data for
testing: vtest

t .
Output: detected symbols in the target domain: xt

Training Stage
1: With vs and xs, train the RNN to obtain model param-

eters θs.
2: Initialize the RNN model with θs, and freeze the weights

of the first GRU layer of the RNN model.
3: Finetune the RNN model to obtain parameters θt by

training the RNN with with vt and xt.
Testing Stage

4: Detect the target data vtest
t using the RNN with θt to

obtain xt.

To investigate the influence of finetuning on the performance
in the target domain, the RBERs of our proposed model-based
DTL for MLC flash memory are illustrated by Fig. 6. In the
source domain, 1×106 training samples and labels are used to
pre-train the model. In the target domain, we vary the number
of training samples N t

train. For each case, to evaluate the
stability of our approach, we take 10 trials of RNN finetuning,
where the training data are generated randomly for each trial.
Observe that as the training data size increases, the BER of
the RNN detector becomes more stable, and converges to the
optimum. Moreover, with only 7×103 training samples in the
target domain, performance of the proposed model-based DTL
can closely approach the best performance where the training
with 1×106 samples is conducted directly in the target domain.

This result indicates that the proposed model-based DTL
approach can significantly reduce the training data size by
two orders of magnitude. This is due to the main channel
characteristics (as described in Section II) of the target domain
and the source domain are similar, and thereby it is easier for
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RNN to learn based on the knowledge also learned from the
source domain. Therefore, starting from the pre-trained model
parameters, the training process in the target domain can be
significantly accelerated.

C. UDA-Based DTL

Although the above described model-based DTL is simple
and can achieve excellent performance by finetuning the
pre-trained model parameters, it still requires a certain number
of labels in the target domain. However, when the channel
offset is large (e.g. caused by a long retention time or a large
number of P/E cycles), the decoding of ECC may fail. Then it
will be difficult to obtain enough labels for training the neural
network.

As a type of feature-based TL, UDA methods migrate
knowledge from a labeled source domain to an unlabeled
target domain [29]. Popular UDA approaches include domain
alignment with statistic divergence, adversarial learning and so
on [28]. In this section, we propose a DTL algorithm based
on UDA, such that no labels are required in the target domain.
Specifically, we will align the mean of each voltage state
between the source domain and the target domain. However,
it is difficult to directly calculate the mean of each threshold
voltage state in the target domain without any labels due to the
overlapping of voltage distributions of different states and the
unknown channel offset. To solve this problem, we adopt a K-
means clustering approach to find the mean of each threshold
voltage state.

The K-means clustering algorithm aims to partition the n
read-back voltages into K clusters C = {C0, C1, . . . , CK−1}
[39], such that the intra-cluster distances are minimized.
Hence, the optimized clusters C∗ are given by

C∗ = arg min
C

K−1∑
i=0

∑
vj∈Ci

(vj − µt,i)2, (13)

where µt,i is the mean of the i-th cluster in the target domain,
and K = 2q since there are 2q voltage states. The K-means
clustering is an iterative algorithm to find the solution of (13).
At the beginning of the algorithm, the initial centroid of each
cluster needs to be determined and it will affect the accuracy
and convergence speed of the K-means clustering algorithm.
Let the order of centroids at the k-th iteration follows

µ
(k)
t,0 < µ

(k)
t,1 < · · · < µ

(k)
t,2q−1. (14)

In our case, it is natural to initialize the centroid of each cluster
as

µ
(0)
t,i = Vsi , i = 0, 1, . . . , 2q − 1, (15)

since they are the means of initial voltage states. Then, the
algorithm proceeds by iterating the following two steps:

1) Assignment step In the t-th iteration, each vj , j =
1, 2, . . . , n is assigned to the nearest cluster according
to the following equation:

i∗ = arg min
i

(vj − µ
(k)
t,i )2. (16)

Fig. 7. Training process of UDA-based DTL (a) Pre-training (b) Finetuning
(Retraining).

Then, vj is assigned to cluster Ci∗ , i∗ ∈ {0, 1, . . . , 2q −
1}.

2) Updating step After all vj’s are assigned to the corre-
sponding clusters, the mean of each cluster is updated
as

µ
(k+1)
t,i =

1
|Ci|

∑
vj∈Ci

vj , (17)

where |Ci| is the number of elements in Ci.
The above iterations are stopped when the mean of each
cluster does not change or the maximum number of iterations
is reached. By applying this clustering algorithm, we can
estimate the mean µt,i, i = 0, 1, . . . , 2q−1, of the i-th voltage
state in the target domain without any labels.

With µt,i, we can align the mean of the sub-domain source
data as

v̄s,i = vs,i − µs,i + µt,i, (18)

where vs,i is the source data that is associated with label i,
and µs,i is the mean of these data. Note that the training data
and labels in the source domain are known, and hence vs,i

and µs,i can be easily obtained. With (18), the mean of each
voltage state in the source domain can be aligned with the
target domain. Note that we did not align the variance of the
source data with that of the target data as it is difficult to
accurately obtain the variance of each voltage state without
any labels.

After the above UDA process, as shown in Fig. 7, we can
finetune the RNN with the transformed source data v̄s and
the original source labels xs to obtain updated model param-
eters θt. Moreover, to accelerate the convergence speed and
reduce the training complexity, we combine the UDA with
the model-based DTL described in Section IV-B. Meanwhile,
we can also retrain the pre-trained RNN by fixing some layers
and finetuning the remaining parameters. We can then use
this updated RNN to detect data in the target domain directly.
The detailed procedure of our proposed UDA-based DTL is
described in Algorithm 2.

Compared with model-based DTL, the UDA-based DTL
does not require any labels in the target domain with the
cost of additional DA process. During the UDA process, the
most time-consuming step is the K-means clustering with
a complexity of O(2qntI), where nt is the number of data
samples in vt, and I is the number of iterations. According
to our simulations, with initial centroids given by (15), the
proposed K-means clustering algorithm for MLC, TLC and
QLC can converge with 3, 40, and 150 iterations on average,
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Algorithm 2 UDA-Based DTL Detection
Input: Source data: vs, source labels: xs, target data: vt, the

initial RNN model.
Output: Trained RNN parameters: θt, detected symbols in

the target domain: xt

Training Stage
1: With vs and xs, follow model-based DTL to pre-train

the RNN to obtain network parameters θs.
2: Calculate v̄s,i, i = 0, 1, . . . , 2q − 1 with (18) to align

the sub-domain mean of the source data with that of the
target data.

3: Initialize the RNN with θs, and retrain the RNN with v̄s

and xs to obtain θt.
Testing Stage

4: Detect vt by the trained-RNN with θt to obtain xt.

respectively. Note that although the number of iterations will
increase with q increases, the maximum number of q is 4,
which is QLC flash memory. Hence, the number of iterations
will not be very large.

D. RNNA Threshold Detection With DTL

Although the proposed DTL-based RNN detectors is effec-
tive, it is not practical to use the RNN to detect every data
block, as it will incur significant read latency and power
consumption. To avoid activating the RNN for each data block,
we can derive read thresholds from the RNN detected data and
then directly use the updated read thresholds for subsequent
data detection. We name the corresponding detection RNNA
threshold detection with DTL.

Both the model-based and UDA-based DTL can be used
to derive the updated read thresholds for data detection.
In particular, for given v and a set of hard-decision read
thresholds

{
V th

1 , V th
2 , . . . , V th

2q−1

}
, we can obtain the detected

symbols x̄. Meanwhile, given v, the RNN can also output its
estimated symbols x̃. Hence, the RNN learned read thresh-
olds can be obtained by searching for the read thresholds{
V opt

1 , V opt
2 , . . . , V th

2q−1

}
that minimize the Hamming distance

between x̄ and x̃:{
V opt

1 , V opt
2 , . . . , V opt

2q−1

}
= arg min
{V th

1 ,V th
2 ,...,V th

2q−1}
d(x̄, x̃). (19)

To obtain
{
V opt

1 , V opt
2 , . . . , V opt

2q−1

}
efficiently, we first uni-

formly quantize the search space into m intervals (typical
value of m ≥ 100), with boundaries b0, b1, . . . , bm, where
b0 = −∞ < b1 < · · · < bm−1 < bm = ∞. Then, the problem
becomes finding 2q − 1 thresholds from b0, b1, . . . , bm, such
that the Hamming distance between x̄ and x̃ is minimized. For
MLC flash memory, 2q − 1 = 3 and for TLC flash memory,
2q − 1 = 7. To solve this problem, we can adopt a dynamic
programming (DP) approach with complexity O((2q−1)m2),
and the details can be found in [10]. After obtaining the
updated read thresholds, we can use them directly for data
detection. As will be shown in Section V, the read thresholds
learned from DTL can achieve near-optimal detection BER
performance.

Fig. 8. The PDFs and learned read thresholds of the source data, target data,
and transformed source data for MLC flash memory with N

target
PE = 104 and

T target = 104 hours (read thresholds markers: square for source data, circle
for target data, triangle for transformed source data).

Fig. 8 shows the PDFs of the source data, target data, and
transformed source data, with the associated read thresholds,
with N test

PE = 104 and T test = 104 for the MLC flash memory.
The read thresholds of the target data and transformed source
data are derived according to (19). Observe that although the
PDF of the transformed source data is more similar to that of
the source data than the target data, the read thresholds learned
from the transformed source data and the target data are quite
close. This indicates that the RNN trained by the transformed
source data can achieve a good detection performance. On the
other hand, the read thresholds based on the source data are
far from that based on the target data, and hence will lead to
a severe performance degradation.

E. UDA-Based Threshold Detection With Original Read
Thresholds

Inspired by the threshold detector with the UDA-based DTL
described above, we further propose a simple UDA-based
threshold detection scheme, for which the neural network is
not needed in the target domain and we can directly use
the original read thresholds in the source domain to perform
detection.

That is, by employing the K-means clustering algorithm
described in Section IV-C in the target domain, we can
estimate the mean µt,i of the i-th voltage state. However,
instead of updating the source data in the UDA-based DTL,
we update the target data, given by

v̄t,i = ṽt,i − µt,i + µs,i, (20)

where ṽt,i can be obtained by using the pseudo labels obtained
from the K-means clustering. With (20), the mean of each
voltage state in the target domain is aligned with that in the
source domain. Then, these target data can be detected by
using the optimal read thresholds

{
V s

1 , V s
2 , . . . , V s

2q−1

}
in the

source domain.
In this way, the RNN in the target domain is no longer

needed for the data detection. Moreover, in practical flash
memories, the initial read thresholds

{
V s

1 , V s
2 , . . . , V s

2q−1

}
have already been provided by manufacturers. Therefore, the
RNN in the source domain is not needed as well. The details
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Algorithm 3 UDA-Based Threshold Detection
Input: Source data: vs, source labels: xs, source domain

read thresholds: V s
1 , V s

2 , . . . , V s
2q−1, target data: vt.

Output: Detected symbols in the target domain: xt

1: With vs and xs, calculate the mean of each voltage state
for the source data, given by µs,i, i = 0, 1, . . . , 2q − 1.

2: With vt, find the mean of each voltage state for the target
data using K-means clustering algorithm in Section IV-C.

3: Calculate v̄t,i, i = 0, 1, . . . , 2q − 1 with (20) to align the
sub-domain mean of the target data with that of the source
data.

4: Detect the transformed target data v̄t with read thresholds{
V s

1 , V s
2 , . . . , V s

2q−1

}
to obtain xt.

of our proposed UDA-based threshold detection is given in
Algorithm 3.

F. Uncoded Error Rate Analysis

In this subsection, we derive the the optimum uncoded SER
and BER by assuming the channel knowledge is perfectly
known. They serve as benchmarks of the various detectors
proposed earlier. For given hard-decision read thresholds{
V th

1 , V th
2 , . . . , V th

2q−1

}
, assuming that the memory cells are

programmed into 2q voltage states with equal probabilities,
the SER is calculated as

Ps =
2q−1∑
i=0

P (vsi
)P (e|vsi

)

=
1
2q

(
P (v > V th

1 |vs0) +
2q−2∑
i=1

P (v < V th
i ∪ v > V th

i+1|vsi)

+ P (v < V th
2q−1|vs2q−1)

)
, (21)

where e denotes the event that an error occurs. With given
PDF pvsi

, i = 0, 1, . . . , 2q − 1 for each voltage state vsi , the
final expression of the SER is given by

Ps =
1
2q

( ∫ ∞

V th
1

pvs0
dv +

2q−2∑
i=1

( ∫ V th
i

−∞
pvsi

dv

+
∫ ∞

V th
i+1

pvsi
dv

)
+

∫ V th
2q−1

−∞
pvs2q−1

dv

)
. (22)

By searching read thresholds
{
V th

1 , V th
2 , . . . , V th

2q−1

}
that min-

imize (22), we can obtain the optimum SER, which can
serve as the lower bound of the proposed detectors. Next, the
corresponding BER can be estimated from the SER. Note that
when the Gray mapping is adopted, the adjacent voltage states
only differ by one bit. Hence, assuming that only the adjacent
states dominate the errors, the BER can be estimated as

Pb ≈ Ps/q. (23)

Note that (23) is a lower bound of the exact BER, since it
only considers errors occurred in the adjacent states. However,
for the case of TLC where intervals between adjacent voltage
levels are getting smaller than the MLC case, more states will

Fig. 9. The analytical and simulated SER and RBER performance of TLC
flash memory at retention time 1× 104 hours.

affect the BER. Hence, (23) is not accurate enough. To obtain
a more accurate BER estimation, we consider adjacent states
that differ by either 1-bit or 2-bit. Therefore, the BER is given
by

Pb ≈
2q−1∑
i=0

P (vsi
)
(

1
q
P (e1|vsi

) +
2
q
P (e2|vsi

)
)

, (24)

where e1 denotes the event that an error occurs in the adjacent
states, while e2 represents the event that an error occurs in the
non-adjacent states which results in 2-bit errors per symbol.
In (24), when i = 0, P (e1|vsi

) and P (e2|vsi
) are given by

P (e1|vsi) = P (V th
1 < v < V th

2 |vs0)

=
∫ V th

2

V th
1

pvs0
dv (25)

and

P (e2|vsi) = P (v > V th
2 |vs0)

=
∫ ∞

V th
2

pvs0
dv. (26)

Similarly, for i = 1, 2, . . . , 2q − 1, P (e1|vsi
) and P (e2|vsi

)
can be calculated. By substituting P (e1|vsi) and P (e2|vsi)
into (24), a more accurate BER estimation can be obtained.

As illustrated by Fig. 9, (22) and (24) can match well with
the simulated SERs and BERs for the TLC case, while (23)
slightly underestimate the BER when the number of P/E cycles
is less than 1000. Therefore, (22) and (24) can serve as
references for the SER and BER of the proposed detectors,
respectively.

G. Discussions

1) Comparison of Proposed Detectors: Comparing the pro-
posed three detection schemes, the RNNA threshold detection
with model-based DTL (presented in Section IV-D) is super-
vised, while the RNNA threshold detection with UDA-based
DTL (presented in Section IV-D) as well as the UDA-based
threshold detection (presented in Section IV-E) are unsu-
pervised. Therefore, these two detection schemes based on
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TABLE II
THE COMPLEXITY OF DTL-BASED DETECTORS FOR FLASH MEMORIES

UDA are more suitable for severe channel conditions where
labels are not available. On the other hand, compared with
the RNNA threshold detection with model-based DTL, these
detection schemes require additional DA steps to approach the
performance with the model-based DTL.

Unlike the RNNA threshold detection with either the
model-based DTL or the UDA-based DTL, the UDA-based
threshold detection does not require the neural network in
both the source domain and the target domain. Therefore, it is
simple to implement. However, it needs to update each target
domain data using (20) before detection, which will incur
additional latency. On the other hand, the RNNA threshold
detection with the model-based DTL or the UDA-based DTL
can directly use the updated read thresholds to detect data.
Therefore, the proposed three knowledge transfer-based detec-
tion schemes should be applied according to the availability
of labels and system requirements.

2) Complexity Analysis: In this part, the complexity of
our proposed DTL-based detectors is analyzed. First, the
proposed RNN architecture consists of two GRU layers and
one output layer. For the GRU layer with L GRU cells and
input dimension D, the number of parameters is 3L(D+L+1).
In our proposed RNN architecture, N readback threshold
voltages are fed into the network for each training or inference.
Hence, given a total of nt training samples in the target domain
and S training epochs, the training complexity can be approx-
imated by O(nt

N SL(D + L)). The inference complexity can
be estimated by reducing the number of epochs to one. In this
work, L = 20 and N = 20. We have D = 1, 20 for the first
and second GRU layers, respectively. Second, the complexity
of K-means clustering for the UDA-based DTL detection
and UDA-based threshold detection is given in Section IV-C.
Third, the complexity for deriving read thresholds is given
in Section IV-D, which is O((2q − 1)m2). To obtain good
performance, the typical value of m is 100 or larger. Hence,
the overall complexity for different detection schemes in the
target domain is summarized in Table II.

First, it can be seen from Table II that the training com-
plexity is linearly proportional to the number of training
samples. Since it has been demonstrated in Section IV-B
that compared with the DL-based approach [10], the pro-
posed DTL algorithms can reduce the number of training
samples and labels in the target domain by two orders of
magnitude, the training complexity is also decreased by two
orders of magnitude. Second, as described in Section IV-C,
the maximum value of q is 4, thereby we conclude that
the overall complexity will be dominated by the RNN
training.

Fig. 10. The RBER performance of different threshold detectors for MLC
flash memory at T target = 1.2× 104 hours.

V. NUMERICAL AND SIMULATION RESULTS

In this work, the RNN-based DTL algorithms are imple-
mented with Pytorch DL framework [40]. In the following,
the channel RBER and the LDPC-coded BER for MLC
and TLC flash memory channels are evaluated with our
proposed threshold detectors. In our experiments, the num-
ber of training samples and labels in the target domain is
106 for the RNNA threshold detector trained without TL
(presented in Section III-B), while it is taken to be 104 for
the RNNA threshold detectors with DTL. In particular, for
the RNNA threshold detector with UDA-based DTL, labels
in the target domain are not needed. We evaluate both the
uncoded RBER and the LDPC-coded BER performance of
various threshold detectors, for both the MLC and TLC flash
memories. Note that for the MLC case, we take Vs0∼s3 =
{1.4, 2.6, 3.2, 3.93}, while for the TLC case, we set Vs0∼s7 =
{1.4, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6}.

A. Raw BER Performance

Figs. 10 and 11 illustrate the RBER performance of dif-
ferent RNNA threshold detectors for the MLC flash memory
over different P/E cycles and retention time. The BER per-
formance of the optimum threshold detector given by (24)
is also included as a reference. First, we observe a large
performance degradation of the RNNA threshold detector
trained in the source domain, and it is due to the channel
mismatch between the source domain and the target domain.
This indicates the necessity of utilizing the knowledge of the
target domain to improve the detection performance. Second,
it can be observed that the RNNA threshold detector with
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Fig. 11. The RBER performance of different threshold detectors for MLC
flash memory at N

target
PE = 5× 103.

Fig. 12. The RBER performance of different threshold detectors for TLC
flash memory at T target = 1× 104 hours.

the proposed model-based DTL achieves the performance of
the RNNA threshold detector directly trained in the target
domain. The RBERs of the two detectors also approach those
of the optimum threshold detector. Third, performance of
both the RNNA threshold detector with UDA-based DTL and
the UDA-based threshold detector is slightly worse than the
optimum performance. The reason is that only the mean of
each voltage state is aligned between the source domain and
the target domain in these detectors. As the variance of each
voltage state is not aligned, there will be a threshold voltage
PDF mismatch between the two domains.

The RBERs of different threshold detectors for the TLC
flash memory is shown in Fig. 12. Different from the results
for the MLC case, it can be seen that for the TLC flash mem-
ory, the performance of both the RNNA threshold detector
with UDA-based DTL and the UDA-based threshold detector
closely approaches the optimum performance. The reason for
this interesting result is that the TLC flash memory channel is
more “symmetric” than the MLC flash memory channel. More
specifically, the TLC flash memory cell has more threshold
voltage states than the MLC one. Except for the erase state,
the variances of all the programmed states are close to each
other. This implies that the TLC flash memory has a higher

Fig. 13. The RBER performance of different threshold detectors for MLC
flash memory with Gamma distributed noises at T target = 1.2× 104 hours.

Fig. 14. The BER performance of the LDPC code with different threshold
detectors for MLC flash memory at T target = 1.2× 104 hours.

percentage of voltage states with similar variances than the
MLC flash memory. The proposed UDA is based on the mean
of each voltage state, while the variance is not aligned. Hence,
the proposed method is better for the TLC case, leading to
better performance of the threshold detection schemes using
UDA.

Finally, to further verify the effectiveness of our proposed
DTL approaches for different noise distributions, we con-
sider the case that the noises in the target domain follow
a Gamma distribution, while the noise PDF in the source
domain remains Gaussian. It can be seen from Fig. 13 that
although the noise distributions of the source domain and
target domain are different, our proposed DTL-based detectors
can still achieve near-optimal performance. This indicates
that the stacked RNN in Fig. 2 is capable of learning the
detection of different noise distributions, and the proposed
DTL approaches can effectively transfer the knowledge from
the source domain to the target domain even if they have
different noise PDFs. To conclude, Figs. 10-13 indicate that
the proposed threshold detectors can effectively combat the
unknown channel offset caused by the P/E cycling and data
retention.
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Fig. 15. The BER performance of the LDPC code with different threshold
detectors for TLC flash memory at T target = 1× 103 hours.

B. Coded BER Performance

To examine the decoding performance of ECCs with learned
thresholds, an irregular LDPC code with codeword length of
4544 bits and information length 4096 bits [8] is employed.
The degree distribution of this code is given by

λ(x) = 0.0682x + 0.1822x2 + 0.1329x3 + 0.6167x4,

ρ(x) = 0.22x38 + 0.78x39. (27)

This LDPC code is constructed by the progressive edge-growth
algorithm [41]. The decoding algorithm is the normalized
min-sum (NMS) algorithm [42] with at most 20 decoding
iterations. For the threshold detectors, the initial LLR is
set to 5 or −5, depending on the detected bit being 0 or
1, respectively. Furthermore, as a benchmark of the coded
BER performance, we design the read thresholds by MMI
of the quantized flash memory channel [7], which is based
on the ideal assumption that the perfect channel knowledge is
known. We use the corresponding BERs as the performance
benchmark.

Figs. 14 and 15 present the BER performance of the LDPC
codes with the MMI quantizer and our proposed threshold
detectors over different P/E cycles, for the MLC and the TLC
flash memories, respectively. Similar to the RBER perfor-
mance shown in Fig. 10, Fig. 14 shows that for the MLC
case, the BER performance of the RNNA threshold detector
trained in the source domain is much worse than that of
other detectors. The LDPC-coded BER performance using
the RNNA threshold detector with the model-based DTL can
achieve that of the RNNA threshold detector that is directly
trained in the target domain, with much less training data. The
performance of the RNNA threshold detector with UDA-based
DTL and the UDA-based threshold detector is slightly worse
than that with model-based DTL, which is also consistent with
our RBER performance shown in Fig. 10. Finally, it can be
seen that the performance of our proposed threshold detectors
is slightly worse than that of the MMI quantizer, due to the
lack of channel PDF.

However, for the TLC flash memory, Fig. 15 shows that
the performance of both the RNNA threshold detector with

Fig. 16. The BER performance of the LDPC code with different thresh-
old detectors for MLC flash memory with Gamma distributed noises at
T target = 1.2× 104 hours.

UDA-based DTL and the UDA-based threshold detector can
almost achieve that of the RNNA threshold detector that is
directly trained in the target domain. This is again consistent
with the uncoded case illustrated by Fig. 12. Furthermore, the
LDPC-coded BER performance under non-Gaussian Gamma
distributed noises in the target domain is illustrated in Fig. 16.
It shows that all the proposed detectors can achieve near-
optimal performance, and the UDA-based detectors perform
slightly worse than the threshold detector with model-based
DTL. Similar to Fig. 13, the LDPC-coded BER performance
indicates that our proposed DTL-based detectors have the abil-
ity to transfer the knowledge to different noise distributions.

The simulation results illustrated by Figs. 10-16 demonstrate
that our proposed threshold detectors based on the DTL and
UDA can almost achieve the performance of the RNNA
threshold detector that is directly trained in the target domain,
with much less training data. This is because the proposed
detection schemes have transferred the knowledge from the
source domain to the target domain through model parameters
and domain adaptation, which can achieve better error rate
performance with much less training complexity.

VI. CONCLUSION

In this paper, we have formulated the data detection for
the flash memory channel as a TL problem, and proposed a
model-based DTL algorithm to effectively reduce the number
of training samples and labels. We have further proposed
a UDA-based DTL algorithm to cope with the scenarios
where the channel has a large unknown offset such that the
labels cannot be obtained. Furthermore, we have derived the
RNNA threshold detectors with the proposed DTL algorithms.
A UDA-based threshold detection scheme has also been pro-
posed which completely avoids the use of neural network.
Both the channel raw error rate analysis and simulation results
demonstrate that our proposed DTL-based detection schemes
can achieve the near-optimal BER performance with much less
training data and/or without using any labels. A possible future
research topic is the design and optimization of the multi-bit
channel quantizer for the proposed DTL-based detectors.
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